

FINESSD: Near-Storage Feature Selection with Mutual Information

for Resource-Limited FPGAs

Nikolaos Kyparissas, Gavin Brown, Mikel Luján

Department of Computer Science, The University of Manchester

Conference Paper | Accepted Manuscript

To be presented in: The 32nd IEEE International Symposium On Field-Programmable Custom

 Computing Machines (FCCM 2024)

DOI: 10.1109/FCCM60383.2024.00028

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/FCCM60383.2024.00028

FINESSD: Near-Storage Feature Selection with

Mutual Information for Resource-Limited FPGAs

Nikolaos Kyparissas, Gavin Brown, Mikel Luján

Department of Computer Science

The University of Manchester

{firstname.lastname}@manchester.ac.uk

Abstract—Feature selection is the data analysis process that
selects a smaller and curated subset of the original dataset by
filtering out data (features) which are irrelevant or redundant.
The most important features can be ranked and selected based
on statistical measures, such as mutual information. Feature
selection not only reduces the size of dataset as well as the
execution time for training Machine Learning (ML) models, but
it can also improve the accuracy of the inference.

This paper analyses mutual-information-based feature selec-
tion for resource-constrained FPGAs and proposes FINESSD,
a novel approach that can be deployed for near-storage ac-
celeration. This paper highlights that the Mutual Information
Maximization (MIM) algorithm does not require multiple passes
over the data while being a good trade-off between accuracy
and FPGA resources, when approximated appropriately. The
new FPGA accelerator for MIM generated by FINESSD can
fully utilize the NVMe bandwidth of a modern SSD and perform
feature selection without requiring full dataset transfers onto
the main processor. The evaluation using a Samsung SmartSSD
over small, large and out-of-core datasets shows that, compared
to the mainstream multiprocessing Python ML libraries and an
optimized C library, FINESSD yields up to 35× and 19× speedup
respectively while being more than 70× more energy efficient for
large, out-of-core datasets.

I. INTRODUCTION

Part of the growing success of Machine Learning (ML) dur-

ing the last decade has been attributed to being able to collect

and curate increasingly large datasets. These large datasets

often can be interpreted as a table containing rows after rows

of values and each column representing a variable, or feature.

Reducing the dataset would naturally reduce the computational

time for the training of a given ML algorithm. Thus, the

recommended practice is to reduce the number of features

(number of columns) that would be used for the ML model.

Such reduction of features is often known as dimensionanality

reduction. The curse of dimensionality and its effects on the

process and accuracy of ML algorithms is well-established

and understood in the literature. Dimensionality reduction is a

fundamental part of data analysis in ML for preprocessing

large datasets in a principled manner as to obtain curated

datasets.

One of the most well-known dimensionality reduction al-

gorithms is the Principal Component Analysis (PCA). Thus,

the FPGA community has studied how to optimise such an

important algorithm in multiple occasions. However, at its

core PCA incurs a matrix factorization with real numbers as

to compute the eigenvalues and the associated eigenvectors.

The FPGA requirements of PCA (and other matrix-based

factorizations) make them not to be the first choice for small

FPGAs.

On the other hand, feature selection is the data analysis

process which selects a subset of the original dataset by identi-

fying a subset of features according to their relevance and them

not being redundant (correlated with another feature in the set).

The most important features can be ranked and selected relying

on statistical measures, such as mutual information. Within

feature selection, filter methods are often preferred over the

alternatives because they are application and ML algorithm

agnostic, generating high-quality reduced datasets regardless

of where and how they will be used.

Information-theoretic feature selection is not based on ma-

trix factorizations, but rather on counting events to measure

event frequencies, and thus calculate probabilities. Thus, this

kind of feature selection can be an ideal candidate for acceler-

ation on a resource-constrained FPGA element. Nonetheless,

mutual-information-based feature selection poses two main

challenges. First, the statistical properties of the dataset, such

as the probability distributions of each feature, have to be

extracted from it, usually in the form of histograms. This

process, depending on the filtering algorithm, requires one or

multiple passes over the whole dataset, resulting in substantial

amount of data transfers and random memory accesses for

multiple histograms. Additionally, in the case of large datasets

which do not fit in the memory, those passes produce I/O

transfers from the much slower storage. Second, calculating

the mutual information between variables is not trivial, with

the mainstream approaches resorting to complex floating-point

mathematical operations such as divisions and logarithms.

To tackle the complexity of feature selection and mutual

information, past approaches either utilize power-hungrier

computing devices such as GPUs, or trade accuracy for

resources and speed with approximate computations. However,

in the case of large datasets, transferring low-reuse data from

storage remains a bottleneck.

When dealing with large datasets that do not fit in main

memory, the main bottleneck tends to become the latency

and bandwidth of accessing the storage devices. Nowadays,

SSDs connected via PCIe (such as NVMe) to a multicore chip

capture most desktop, laptops and server computing devices.

To avoid the bottleneck of transferring data from the SSD

via PCIe, there is a growing interest in bringing computation

Counter
Width
Logarithm
Table Width
Logarithm
Table Length

FINESSD: MIM Hardware Approximation

Part or
complete
dataset Accuracy

Evaluation
against MIM

FPGA Area
& Timing

Evaluation

Counter
Partitioning
Factor

AMD VitisPARAMETERS PARAMETERS

Modelling (MATLAB)
FINESSD: MIM Hardware
Design Generation (BSV)

& HW Model
Configuration

D
EP

LO
YM

EN
T

Recalibrate Dimensions Recalibrate Partitioning

Dataset

Verilog
Accelerator

Fig. 1. The flow of FINESSD: a MATLAB model of the mutual information approximation and the hardware design dataflow is used to perform design
space exploration, until a configuration with an acceptable final accuracy is found. The accelerator generator written in Bluespec SystemVerilog (BSV) uses
that configuration along with other architectural configuration options to generate the Verilog code of the final MIM accelerator.

closer to the storage; near-storage processing. When compared

with state-of-the-art chips found on servers, the computational

capacity of the near-storage processing elements is much

reduced and constrained.

To overcome the aforementioned challenges, we identify the

Mutual Information Maximization (MIM) algorithm [1] for ac-

celeration since it avoids multiple passes over the dataset. We

propose FINESSD, a methodology for approximating MIM

and generating accelerators for resource-constrained FPGAs

(Figure 1). We deploy FINESSD on a Samsung SmartSSD,

a reconfigurable computational storage device (CSD), and

show how the generated FPGA design can fully harness the

bandwidth of a modern SSD. By doing so, FINESSD offloads

from the host the feature selection pipeline with significant

end-to-end performance and energy gains.

This paper makes the following contributions:

• We propose FINESSD, a novel hardware-oriented

methodology for approximating mutual information with

resource-constrained FPGAs. We provide a thorough

design space exploration, contingent on the resource

constraints of FPGA-based CSDs, illustrating the trade-

off between accuracy and hardware resources.

• Based on counters that record multiple feature samples at

clock rate, the FPGA accelerator generated by FINESSD

transforms the MIM algorithm from compute-bound to

I/O-bound and filters the data with one sequential read,

outperforming the baseline methods by tackling the data

transfer and computation bottlenecks.

• We present the first near-storage application of feature

selection, reducing data transfers of low-reuse data from

storage to host over PCIe and increasing parallelism.

• We evaluate FINESSD using datasets of different di-

mensions and complexity, yielding up to 35× speedup

over established, mainstream multi-processing tools and

significant energy improvements.

II. BACKGROUND

This section provides the context for feature selection and

near-storage processing as to allow for further discussion

thereafter. We introduce the fundamentals of feature selection,

the role of mutual information as a scoring function, and the

choice of MIM as an ideal candidate for resource-constrained

FPGAs such as the ones found on CSDs.

A. Feature Selection and Mutual Information Maximization

In ML, many significant applications such as gene expres-

sion and text clustering may easily be comprised of several

thousand variables, or features [1], [2]. Many of these features

can be redundant or irrelevant, increasing the computation cost

[3] and compromising the accuracy of the ML model, for

example, by causing it to be prone to overfitting [1]. Hence,

dimensionality reduction is an integral part of the ML pipeline.

Feature selection is a dimensionality reduction approach

which, in contrast to feature extraction, preserves the data

in their initial form by choosing a higher-quality subset of

the initial features, excluding those which are redundant or

exhibit low correlation. Preserving the original features is

necessary, for example, when it comes to applications where

model explainability is required, such as healthcare or safety-

critical applications [4]. While there are several strategies to

conduct feature selection, in this paper we will focus on filter

methods. Filter methods use scoring mechanisms based on

statistical measures to evaluate the usefulness of the input

features relative to the output labels. The advantage of filter

methods is that, in contrast to other feature selection strategies,

they are independent of the ML algorithm that will be used, as

they rely only on the statistical correlations found in the data.

As a result, filter-based feature selection produces smaller,

generic inputs of higher quality.

One of the prominent measures used for scoring the features

is mutual information [1], [5]–[8]. In information theory,

the mutual information between two random variables is

the amount of information that is common in those two

variables [9] or, in other words, the amount of information

that is revealed about a random variable when observing the

other one. Mutual information between two random variables,

feature X and label Y , is defined as:

I(X;Y) =
∑

x∈X
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x) is the probability of the random variable X
having the value x, and is usually calculated with histogram

estimators. With mutual information as a scoring criterion, the

score of a feature Xk for a class label Y is defined as:

SMIM (Xk) = I(Xk;Y)

Once we calculate SMIM (Xk) ∀ k, we rank the features based

on their importance score and choose the K ones with the

highest score. This method is known as feature selection based

on Mutual Information Maximization (MIM).

MIM is widely used and, in most cases, has similar filtering-

quality performance to other information-theoretic filtering

algorithms such as Joint Mutual Information (JMI) and mini-

mum Redundancy - Maximum Relevance (mRMR) [1], [10],

[11]. However, MIM feature selection has the critical advan-

tage of requiring only one pass over the dataset and simpler

histograms, and for a dataset of N samples and M features its

complexity is O(NM) as opposed to O(NM2) for JMI and

mRMR. Hence, MIM is preferred when more passes over the

dataset would be inefficient or even impossible (e.g. in [12]).

Near-storage deployment is such a scenario.

B. Near-Storage Processing and MIM Feature Selection

In a typical computer system, the host processor orches-

trates the dataflow between the storage, the memory and the

coprocessors or accelerators which, normally are connected via

PCIe. Up until recently, in order for the coprocessor to process

data found in storage, the host processor needed to load part

of the file from the storage to memory and then copy the data

from its address space to the address space of the accelerator.

The latter step of time-consuming memory copies can now be

bypassed with the use of an IOMMU [13] or protocols such

as CXL [14] which provide a shared address space between

the host processor and the accelerator.

An effective approach to improve coprocessor access to the

storage, is to bring processing closer to it; a research area

known as near-storage processing. The key idea behind this

strategy is that there exists a direct link between the processing

element and the storage device without the mediation of the

host processor. Controller Memory Buffers (CMB) in NVMe

enable a peer-2-peer (P2P) connection from one NVMe PCIe

end point to another without using a system memory buffer.

In recent years, significant efforts have been made to bring

processing even closer to storage and process data within

the storage device [13], forming a computational storage

device (CSD). Bringing processing so close to the data has

numerous advantages, such as decreased data transfers via the

system PCIe bus, increasing parallelism by unloading the host

processor, and reduced energy consumption.

However, CSDs, and especially reconfigurable CSDs, are

characterized by a number of constraints. First, in most cases,

they have limited hardware resources available for processing.

Second, they are suitable for applications with high spatial and

low temporal data locality, which are able to maximize the

amount sequential accesses to the storage part of the CSD. As

we mentioned in Section II-A, MIM has the critical advantage

of needing only a single pass over the dataset and simpler

hardware requirements for its histogram-based data structures

compared to JMI and mRMR, making it the ideal candidate for

near-storage acceleration and the resource-constrained FPGAs

of CSDs if accelerated appropriately. While JMI and mRMR

are able to take advantage of the re-use of features, unlike

MIM, this eventually acts as their disadvantage against MIM.

Mechanisms such as host page caching do not help for the

mentioned algorithms in the cases of large and larger-than-

memory datasets, where consecutive, complete passes are

required over the dataset.

In this paper, we present FINESSD, our hardware-oriented

approach on mutual information for accelerating MIM feature

selection. The FPGA design generated by FINESSD acceler-

ates MIM, causing it to become I/O-bound. When placed near

storage, the FINESSD FPGA accelerator filters big datasets

directly where data lie with a single sequential pass, resulting

in significant time and energy savings by avoiding costly I/O

transfers to and from the host.

C. Related Work

In recent years, several hardware acceleration approaches

have been proposed for accelerating mutual information calcu-

lations, either independently or as part of feature selection and

other algorithms. CUDA-JMI [15] and Fast-mRMR [16] use

GPUs to speedup the two feature selection algorithms, JMI and

mRMR respectively. Aside from the fact that GPUs are power-

hungry, the main problem of these GPU implementations is

that they are limited by the shared memory found on the

device when counting contingency tables. Also, as we saw

in Section II-B, a direct comparison between these GPU im-

plementations and FINESSD for large and larger-than-memory

datasets would not add any extra information.

FPGAs have also been used for calculating mutual informa-

tion. A combination of reduced-precision arithmetic and look-

up tables was used in [17], trading accuracy for parallelism to

achieve a highly-parallel architecture on a multi-FPGA system.

A different strategy for partitioning the problem in multiple

parallel parts and using a combination of fixed and floating

point precision was used in [18], with intensive processing

over small data in mind, in contrast to our case. Approximate

computing has been applied even more extensively by [19],

where fixed-point arithmetic and narrow counters where used

for feature selection, but with embedded platforms as a target

and a limited set of selected features. Also, this analysis was

not accompanied by a hardware implementation, which, as we

will see later, comes with its own challenges.

As we mentioned earlier, counting histograms is a big

part of calculating mutual information and constitutes one

of the bottlenecks, which is why in the cases of CUDA-

JMI [15] and [17] histogram counting was offloaded either

partly or completely to the host CPU. Fast-mRMR [16] is

using a different approach, based on changing the dataset

access pattern from row-wise to column-wise (from sample-

by-sample to feature-by-feature); a low-level trick that we also

utilize in order to reduce the amount of random accesses to

multiple histograms.

To our knowledge, FINESSD is the first near-storage feature

selection solution and the first FPGA accelerator for the whole

end-to-end process of feature selection.

0 10 20

X0

0

5

10

15

20

25

X
1

0 10 20

X0 (good feature)

0

5

10

15

20

25

X
1
 (

b
a
d
 f

e
a
tu

re
)

Label

0

1

Fig. 2. A high-level overview of MIM: calculating and ranking the information-theoretic scores for a curated binary-classification dataset of N samples and
two features, X0 and X1. A The histogram of every feature and the histograms of the joint appearances of every feature with every class label must be
calculated. Here, histograms 1, 2 and 3 refer to feature X0, and histograms 4, 5 and 6 refer to X1. After extracting the histograms, B these have to be

processed to calculate the information-theoretic score of each feature. C A list of the best features can be extracted by the ranking of the feature scores.

III. FINESSD: PROFILING, APPROXIMATION AND

MODELLING

A. Breaking Down MIM Feature Selection

There are three key steps in MIM feature selection: A

estimate the probability distributions of the features and the

label, B calculate the mutual information between every

feature and the label based on their probability distributions,

and C rank the features based on their mutual information

scores. The process over a simple example dataset is shown

in Figure 2.

The first important step consists of estimating the proba-

bility distributions of the dataset features. This is attributed

to the fact that, practically, it is impossible to know the true

probability distributions p(x), p(y) and p(x, y) and we have

to estimate them from the dataset. Estimating mutual infor-

mation for continuous data is not trivial [20]–[22] as we need

to measure the probability densities without the probability

density functions. Therefore, in this paper, we use datasets

discretized with Sturge’s rule, a commonly-used algorithm that

chooses the number of bins needed to approximate the original

distribution of the samples based on the size of the dataset. For

the scope of this paper, it is safe to assume that this process

has been conducted offline as it refers to previous stages of a

typical data preprocessing pipeline.

According to maximum likelihood estimation, the probabil-

ity of an event can be estimated from the observed data as the

number of event occurrences over the number of total events

(i.e. the total number of samples): p̂(x) = [count(X = x)]/N .

Consequently, we estimate the probability distributions with

histogram estimators, which give us the estimated frequency

of the events.

Figure 2 shows that for every feature, numerous histograms

have to be extracted from the data in order to calculate the

score of that feature. This is the only pass required over the

data for MIM feature selection, where each data element is

only ready once. For example, in the simple example shown

in Figure 2, we need one histogram for each feature, and

two more histograms per feature for its joint appearances

with the two classes of the label. From the joint-appearances

histograms it can already be seen that X0 is better at providing

an indication about the classification result.

As we see in the formula of mutual information (Equa-

tion 1), for datasets with the same number of labels and

bins, regardless of the number of samples, calculating mu-

tual information between a feature and a label requires the

same number of steps once we have counted the probability

distribution histograms. However, the number of samples in a

dataset is proportional to the time required for counting the

histograms. We created two synthetic datasets with the same

N×M size, but one is “short and wide” (few samples N , many

features M) and the other is “tall and slim” (many samples,

few features). Both are synthetic datasets created with Scikit-

learn’s make classification function, having the same number

of bins, labels, and probability distribution properties.

In Figure 3 we can see that for two datasets with the

same characteristics, the time required for calculating the

mutual information score of one feature (green rectangle) is

significantly larger for the dataset with more samples, only

because of the histogram calculations. That phenomenon is

amplified when we apply MIM feature selection on large

datasets with a large number of samples, since the number of

samples is proportional to the effort needed for determining a

feature’s statistical properties.

B. Breaking Down Mutual Information

Considering that counting consumes most of the time we

need for MIM feature selection, limiting the different objects

that have to be counted affects greatly the performance of

our approach. In order to minimize the amount of items we

need to count, it is necessary to modify the second step

of MIM feature selection, which consists of calculating the

mutual information score for each feature. As mentioned

before, mutual information is a measure used for scoring the

features in order to rank them by importance. However, the

actual value of the score in this application is irrelevant, as

the ranking of the features is the only end goal. To that end,

we will preserve only the parts of mutual information that are

necessary for ranking. Mutual information can be expressed

as I(X;Y) = H(Y) − H(Y |X), where we can see that the

Fig. 3. Profiling a multi-process Python version of MIM on 20 processing
cores for two datasets with the same number of bins and labels and different
number of samples. On top, the time required for calculating mutual infor-
mation for one feature (green rectangle) is significantly smaller compared to
a dataset with more samples (bottom), solely due to histogram calculations.

first term of the two, H(Y), is the entropy of the label. Notice

that we can neglect H(Y) without affecting the final ranking

of the features, since its value depends only on the label and

remains the same for every feature.

As a result, we can use the conditional entropy H(Y |X) for

scoring the features and have the same result. Estimating the

conditional entropy with histogram estimators, given a dataset

D = {([x1, x2, ..., xm]i, yi); i = 1..N} with N samples,

where xki is the value of feature Xk in the i-th sample labeled

yi, conditional entropy can be estimated as:

Ĥ(Y |X) = −

N
∑

i=1

p̂(xi, yi) log p̂(yi|xi) =

−

N
∑

i=1

(count(xi, yi)

N
log

count(xi, yi)

count(xi)

)

=

−
1

N

N
∑

i=1

[

count(xi, yi)
(

log count(xi, yi)− log count(xi)
)]

Notice that we can neglect multiplying the score of every

feature by the constant 1/N without affecting the final ranking

of the features. Also, by inverting the subtraction operands,

since count(x) ≥ count(x, y) we do not need to negate

the summation and we only need unsigned integers for our

calculations. We do not have to count the frequency of how

many times each value appears (count(xi) ∀ i ∈ N), since

we have that information as the sum of all joint counts of a

given x ∀ y ∈ Y .

Thus, the final information-theoretic criterion that we can

use to rank the features based on their importance relies only

on counting the different joint appearances of X (feature bins)

and Y (labels) for every feature:

I(X;Y) ≈ Î(X;Y) ∝ Ĥ(Y |X) ∝ S′(X) = (2)

N
∑

i=1

{

count(xi, yi)
[

log
(

∑

y∈Y

count(xi, y)
)

− log count(xi, yi)
]}

Notice that the objects we have to count for the whole dataset

form a cube whose dimensions are features× bins× labels

Feature

Label

Bin

Input
Sample

Value
Feature

Label

XY Counters

+1

Fig. 4. A cube of counters is formed by all the different objects we have to
count in order to estimate the mutual information between the features and
the label for the whole dataset.

(Figure 4). Basically, for every feature we have a 2-D matrix

which is its contingency table. Visualizing the counters this

way provides an initial insight on how each dimension of the

cube affects the amount resources needed for approximating

the probability distributions on hardware.

However, as we mentioned earlier, with FINESSD we are

resorting to the same low-level nuance as Fast-mRMR [16],

reading the dataset in a feature-by-feature manner (column

by column) instead of sample by sample (row by row). This

allows us to alternate between only two copies of the afore-

mentioned 2-D contingency tables (double buffering), having

the need for only 2× bins× labels counters instead of having

the whole cube of counters available at any time in hardware.

Hence, we can use one set of counters to calculate the score of

feature Xk right after we have finished counting its histograms,

while we use the other set to count the histogram of the next

feature, Xk, in parallel. In this way, FINESSD is completely

scalable as far as the features dimension is concerned, being

able to handle an arbitrary number of features.

C. Design Space Exploration: Dimensioning and Trade-offs

FINESSD is configurable and can be completely adjusted

according to the use case. To calculate the score for every

feature as described in Equation 2, we introduce the dataflow

of FINESSD shown in Figure 5. A look-up table is used

to calculate the logarithm. There are some properties of the

design that can drastically affect the area and the accuracy

performance, such as the width of the counters and the

logarithm look-up table length and width. However, not every

configuration can perform well over any dataset.

Adjusting the width of the counters directly affects the logic

resources needed for their implementation. Wider counters

allow for a more accurate approximation of the different

dynamics between the joint probability distributions, whereas

narrow counters can still follow the distributions’ trends. When

a counter is about to overflow, all the counters are shifted

right, avoiding the overflow and preserving the trends of the

histograms. The number of counter overflow shifts depends

on the number of samples in the dataset and how smooth or

spiked the distributions are.

A similar intuition follows the logarithm look-up table.

More precision is needed if the scores of features are very

close; for example, in our synthetic dataset examples, all

XY Counters

−

Logarithm
LUT

×

log(cxy)

log(cx)

∀ k, x∈X,
y∈Y

+

+

Score[x]

cx = Σcxy

Y

y=1

cxy

cxy

Fig. 5. The dataflow of FINESSD for approximating our information-theoretic
scoring function consists of two seperate stages of the process, histogram
counting (green) and processing (purple).

features follow very similar normal distributions. The table

length, apart from the logarithm precision, also affects how

much the counters need to be truncated for a look-up opera-

tion, while the table width affects the precision of the multiply-

accumulate operations and thus that of the final score.

A detailed model of FINESSD has been created in MAT-

LAB, enabling the quick design space exploration based on the

aforementioned parameters over multiple datasets. The model

reports the accuracy of FINESSD over the selected datasets,

before the user proceeds to generate the design based on their

needs. The results of such an example can be seen in Figure 6.

IV. FINESSD: DESIGN AND IMPLEMENTATION

In FINESSD, the three key steps of MIM feature selection

(A counting, B calculating, C sorting) are completely sep-

arate stages, making control data-driven and straightforward.

The stages are pipelined, with each stage running in parallel

to the next iteration of the previous stage. The architecture of

the system can be seen in Figure 7. The design and function

of its parts are analysed below.

A. Counting Histograms for Probability Distributions

There are two sets of counters for the contingency table

of two features as we use double buffering to read the

dataset input in a feature-by-feature manner. When FINESSD

is counting the histograms of a feature, it is using the first

set of counters. Once it reads the last sample of that feature,

it copies the values of the counters to the second set in one

clock cycle and uses the first set to count the histograms of

the next feature.

As we mentioned earlier, histogram counting is one of the

bottlenecks of calculating mutual information. For a near-

storage solution, we need to be able to fully harness the

bandwidth provided by a modern SSD, and in order to do that,

we have to count fast. Accessing the data feature by feature

instead of sample by sample, saves us a lot of counters (and

hence resources and timing convergence effort), since we need

to count only the joint appearances of values and labels for

one feature at a time. Still, we need to do so at clock rate with

a wide interface in order to reach high speeds for a generic

near-storage solution applicable to faster storage devices.

32-bit 100.0% 99.0% 98.0% 97.0% 96.0% 91.0% 61.0% 0

20-bit 100.0% 99.0% 98.0% 97.0% 96.0% 91.0% 61.0% 0

16-bit 100.0% 99.0% 98.0% 97.0% 96.0% 91.0% 61.0% 41

12-bit 96.0% 96.0% 96.0% 96.0% 93.0% 84.0% 60.0% 49356

8-bit 66.0% 66.0% 66.0% 66.0% 66.0% 67.0% 66.0% 856842

A16 A16 A12 A12 A10 A8 A8

W32 W20 W32 W16 W16 W16 W11

Logarithm LUT Addressing/Width

C
o

u
n
te

r
W

id
th

O
v
e

rf
lo

w
s

Fig. 6. The ranking accuracy when selecting 100 out of 2000 features of the
“Epsilon” dataset compared to the baseline. Both the width of the counters
and the dimensions of the logarithm look-up table affect the accuracy of
FINESSD.

Histogram FPGA designs in existing papers usually use

either BRAM in a map-reduce fashion [18], [23], or elaborate

encoding techniques which require substantial resources [24].

However, since we need to switch counting buffers in a few

clock cycles between features, using two copies of multiple

subcopies of a histogram would not be practical resource-

wise. Also, as we explained in Section III-C, preventing the

counters from overflowing is achieved by right-shifting them

all when one counter is about to overflow. With multiple copies

of counters in BRAM, that would require a LOAD-SHIFT-

STORE operation sequence over every memory element.

Instead, we use hardware logic for all counters, being able

to perform the aforementioned operations within a few clock

cycles. FINESSD comes with a wide interface to fully harvest

the high bandwidth of a storage device. Hence, we accept

multiple inputs per clock cycle, and they all have to be counted

without knowing how many common values we have in every

read. Having all the counters checking if and how many of

those values need to be counted in a clock cycle makes routing

impossible.

For that reason, we stream the values through a Gearbox

FIFO in order to reduce the processing frequency without

sacrificing reading speed, providing routing with some slack.

The overall performance of the feature selection pipeline is not

affected by lowering the clock frequency, since processing is

still completed before the next buffer change. Next, the stream

of values is passed through shift registers. Every register is

feeding a different subset of counters with values, and all

the counters of that partition are checking all the values of

that batch in one clock cycle, as shown in Figure 8. The

width of the shift register is determined by the width of the

interface, however the numbers of shift registers and counters

per partition are customizable by the user.

In this way, we are achieving 20 to 40 times more samples

counted per second for double the number of histogram bins

compared to [24], depending on the interface width chosen by

the user, as explained below.

B. Processing the Histogram and Sorting

Once a feature’s joint probability distributions have been

approximated by histogram counting, we copy the counts to

the second pair of counter registers. The second pair of counts

is used for calculating the feature’s score, while the first pair

of counters are reset and ready to be used for next incoming

feature after 1 clock cycle.

S
S×2 values

...

......

...

f/2 Hzf Hz

S×2 values REG

Gearbox
FIFO

...

...

...

New counter value

New feature
received

+
cx

cxy

Buffering

Counters
Logarithm LUT

y index counter

FIFO

+
REG

Pop. Count

Counter

values
feature

COUNTING HISTOGRAMS

...

SORTING

− × +

Sorter

REG

Rank to

Req.

host

from host

Score

R
EG

>

R
EG

>

PROCESSING

Fig. 7. The complete architecture of FINESSD. The three steps of MIM feature selection (A counting, B processing, C sorting) are seperate and independent
from one another, with data moving in a stream-through fashion. Control signals are straight-forward and have been omitted in this figure, for example ”Sort
Enable” when Multiply-Accumulate is completed etc.

count(0,1)

count(1,1)

count(2,1)

count(3,1)

count(4,1)

count(5,1)

count(0,0)

count(1,0)

count(2,0)

count(3,0)

count(4,0)

count(5,0)

[2,1] [2,1] [4,0] [2,1] [5,0]

1 0 4 11 7 52 0 3 5 3+2 +1 +3

[1,0] [1,1] [1,0] [3,0] [5,1]

9

count(0,1)

count(1,1)

count(2,1)

count(3,1)

count(4,1)

count(5,1)

count(0,0)

count(1,0)

count(2,0)

count(3,0)

count(4,0)

count(5,0)
1 7 11 72 2 5 310

INPUT

5 feature
values

per CLK
cycle

INPUT

5 feature
values

per CLK
cycle

TCLK+1TCLK

5

[1,0] [1,1] [1,0] [3,0] [5,1]

0
+1 +1

Feature sample: [value, label]

cxy for y = 0 at TCLK cxy for y = 1 at TCLK cxy for y = 0 at TCLK+1 cxy for y = 1 at TCLK+1

3

[2,0] [2,0] [2,0] [2,0] [2,0]

+5

Fig. 8. An abstract representation of how FINESSD would partition counting the histograms for one feature of a 6-bin binary classification dataset, with the
system accepting 5 sample inputs per clock cycle. For multiple values accepted per clock cycle and many counters, finding which values must be counted by
which counter and how many of them are common makes routing impossible. We partition this population count task into batches of different counters for
the same input and we propagate the input values through shift registers to limit routing congestion.

The processing part of FINESSD implements the dataflow

shown in Figure 5 to calculate the information-theoretic score

for every feature (Equation 2) in a completely pipelined

manner, as shown in Figure 9. All the processing elements

perform unsigned integer arithmetic operations. The logarithm

is implemented as a look-up table in the FPGA’s BRAM. A

MATLAB script generates a suitable fixed-point representation

and generates the look-up table, depending on the desired

number of elements in the table. A scaling factor can be

applied, in order to scale down the values as long as the

scaling preserves as many distinctive values in the table as

desired, before duplicates start to appear due to rounding. The

granularity of the logarithm affects the final ranking of the

features, especially when the distributions of the features are

similar to one another.

As we can see in Figure 9, because of our approximate

computing approach of transforming the calculation of mutual

information into a few basic integer operations and look-ups,

for calculations we only need a fraction of the time we need

for counting. Hence, the whole processing and sorting part

operates at half the frequency of counting, providing the place-

and-route tools with some slack and saving resources.

Sorting is also conducted in a way that, as a module, it

functions independently. As soon as there is a score input,

a shift register with comparators in-between its registers

transfers the new score value in its rank (Figure 7). We only

accept a sorting value every time we have completed all the

necessary calculations for a feature score, as denoted by the

sole “sorting” stage in Figure 9.

C. Implementation

The system is implemented in hardware using Bluespec

SystemVerilog (BSV) and tested as an RTL Kernel for AMD

Vitis 2022.2. BSV combines the flexibility of High-Level Syn-

thesis (HLS) with the explicitness of a Hardware Description

Language (HDL). As a superset of SystemVerilog, it allows

for complex design approaches that HLS does not provide,

such as multiple clock domains within one module and custom

interfaces between modules. At the same time, BSV’s atomic

rules offer a high level of concurrency, allowing for rapid

design exploration and prototyping [25], [26].

FINESSD is integrated with the host application with the

use of Xilinx Runtime Library (XRT), a set of libraries and

drivers which enable not only the communication between the

software and the hardware, but also the direct P2P connection

between the SSD and the FPGA. For that reason, the hardware

Counting
Calculating Score

...

score[1]

score[2]

...

score[K]

Idle Process

Calc.
Cx

LUT
Req.

LUT
Read MUL Accum.

...
SORT

Calc.
Cx

LUT
Req.

LUT
Read MUL Accum.

Calc.
Cx

LUT
Req.

LUT
Read MUL Accum.

DONE

Feature Reading
Complete

feature[1] feature[2] feature[K]

Reading Feature ...

Fig. 9. The dataflow of processing a feature’s histogram while counting the
histogram of the next feature. Counting is performed directly when reading the
dataset. Thanks to our approximate computing approach, processing requires
only a few steps and it can be of a lower clock frequency. Therefore, we can
focus routing and performance efforts on fast counting and make a difference
for big datasets.

kernel of FINESSD supports the appropriate Block-Level

Control Protocol required by XRT, which orchestrates our

system’s AXI4 interface. FINESSD can be called as a function

in C/C++, accepting a pointer to the dataset file buffer and the

dataset dimensions as an input. The dataset file is in NumPy’s

.npy binary format [27]. Column-wise reading is accomplished

by simply storing the transpose of the dataset in storage using

the corresponding built-in NumPy option.

The design is scalable and is automatically generated based

on the aforementioned parameters of the logarithm table length

and width, number of counters, counter width, counters per

partition, and interface width. It can accept 16, 32, or 64 sam-

ples per clock cycle. For convenience and easier deployment,

FINESSD comes with an optional AXI4 interface, either 512

or 1024-bit wide. With any of those two interface widths and

any of the aforementioned number of inputs, FINESSD can

process incoming data at 250 MHz, as long as there are enough

samples per feature to be counted while processing the previ-

ous feature. The time it takes to process a dataset is the time

needed to read it, plus the processing time and sorting for the

last feature: (N/S)×M+2×(bins×labels+LMUL+K+2)
cycles, where N is the number of samples, S is the number of

values we accept in every cycle, M is the number of features,

LMUL the latency of the multiplier and K the number of

features we want to select (final sorting).

D. Limitations

The limitation of FINESSD is its scalability, as there have

to be enough counters in the FPGA implementation for any

potential dataset dimensions and the corresponding histograms

(labels×bins×2). However, with the current technology, even

with the modest-sized FPGA of the CSD used during evalua-

tion (see Section V), FINESSD can fit 1600×2 32-bit counters,

occupying only 66% of the resources; a configuration which

should fit the vast majority of curated tabular datasets. Due to

the stream-through pipeline of the FINESSD accelerator, the

number of counters is primarily an area and not a timing issue.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Baseline

To evaluate FINESSD we use a SmartSSD, a CSD consist-

ing of an SSD with onboard FPGA introduced by Samsung and

AMD [28]. As shown in Figure 11-a, the SmartSSD consists

of an NVMe SSD, an FPGA, FPGA DRAM and a dedicated,

onboard PCIe switch. The FPGA DRAM is exposed as a

common memory area to both the host and to the NVMe

SSD. This configuration allows for direct P2P data transfers

between the storage and the FPGA, and effectively minimizes

PCIe traffic and the data transfer overhead from the SSD

to the host and from the host to the FPGA (Figure 11-b),

leaving to host only the initialization of P2P requests. The

SSD’s maximum reading bandwidth is 3.3 GB/sec while the

maximum bandwidth of the FPGA DRAM is 15.4 GB/sec. The

SmartSSD CSD has been used with great success in the past

for other data-intensive applications such as sorting [29]–[31]

and large-scale searching [32].

We install a SmartSSD in a computer system with an Intel

Core i9-7900X chip running at 3.30 GHz (max 4.3 GHz)

and 64 GB of RAM (DDR4 at 2133 MHz). The system

runs Ubuntu 20.04.6 with Linux Kernel 5.15.0-79-generic. The

version of the AMD tools (Vitis and XRT) is 2022.2. We

compare FINESSD against mainstream and high-performance

MIM software libraries and suites:

• A popular ML library, known as Scikit-learn [33], imple-

mented in Python and its built-in MIM feature selection

function, SelectKBest(mutual info classif),

• A multi-process version of feature selection using Scikit-

learn’s mutual info score and Dask [34], which is a suite

of tools for parallel, out-of-core computing in Python,

supporting larger-than-memory datasets,

• FEAST [1], [35], an optimized feature selection suite

implemented in C with MIM as a built-in option.

The metrics used in the evaluation are:

• Execution time and speedup: end-to-end time for reading

the dataset from storage and producing the list with the

top K selected features.

We only evaluate configurations with wide counters that pro-

duce 100% accuracy compared to the baseline, ensuring that

FINESSD preserves the accuracy of the algorithm. We also

feature a brief discussion on the FPGA resource allocation

per example and the measured energy efficiency savings of

FINESSD in contrast to the baseline.

FEAST accepts discretized datasets as inputs, stored in MAT

v7.3 files. For Python we use NumPy files. NumPy files are

high-performance binary files which can be used by all major

ML Python tools such as TensorFlow, PyTorch and Scikit-

learn [27]. Binary files are often preferred over hierarchical

file formats such as HDF5 because they are splittable and

have native support for the aforementioned ML suites.

Fig. 10. Execution time of FINESSD compared to both mainstream and high-performance solutions running on a high-end desktop computer. The execution
time includes the time to load the dataset from an SSD and select the K best features.

Fig. 11. a) Organizational overview of SmartSSD, b) PCIe events as perceived
by the host CPU, measured by Intel Performance Counter Monitor (PCM)
when the “Synthetic 1” dataset is being loaded by the host (NumPy) vs.
FINESSD (P2P Connection).

While SelectKBest is the mainstream out-of-the-box solu-

tion, we deem that a fair approach should include a multipro-

cessing approach which does not require a lot of programming

effort and would be what most users would do to gain perfor-

mance. The numbers for the sequential version of Python are

only mentioned to highlight the performance of the optimized

version of Python using multiprocessing (“Python MP”). In the

rest of the paper, we will only comment on the comparison

between FINESSD, Python MP and FEAST.

We use the Enterprise-Class Samsung SSD (3.84 TB PCIe

Gen3×4) found on the SmartSSD for the baseline software

experiments and the near-storage processing experiments with

FINESSD alike. To check whether this affects negatively the

software baseline, we also run the software experiments using

another SSD, a Samsung 970 EVO Plus 1 TB, instead of the

SmartSSD. The results do not show any significant difference

in the execution time, and thus for conciseness they are not

presented.

B. Experiments and Results

For the experiments we used small, large and larger-than-

memory datasets, to showcase the accuracy of our approxima-

tion and the effect of near-storage placement as the properties

of the dataset change. The size and characteristics of the

datasets vary in different dimensions, as shown in Figure 10.

TABLE I
COMPARATIVE PERFORMANCE OF FINESSD.

Higgs Epsilon SVHN Synth. 1 Synth. 2

Python 146.33× 109.02× 112.52× 114.39× –

Python MP 30.47× 20.93× 18.13× 21.34× 35.21×

FEAST 19.72× 16.90× 16.03× 15.92× –

The execution times of each case and the speedup of FINESSD

can be seen in Figure 10 and Table I accordingly.

The datasets span several applications and fields, from

digit classification on images (Modified National Institute of

Standards and Technology – MNIST [36], Street View House

Numbers – SVHN [37]), to particle physics (Higgs Boson

[38]) and ranking models (Microsoft Learning to Rank [39]).

The first point of interest is that, even for relatively small

datasets, FINESSD outperforms the baseline. This is attributed

to the high throughput of the accelerator, which starts counting

multiple samples per clock cycle right from the first AXI4

burst received. Second, we notice that FINESSD yields higher

speedup for datasets with a large number of samples due to

the more demanding histogram calculations.

In addition to real-world datasets, we evaluate FINESSD

using synthetic datasets. Large datasets are in most cases

proprietary, thus, it is common for the Big Data and

ML communities to use synthetic datasets for evaluation

[40]. In order to produce the dataset, we used Python’s

dask ml.datasets.make classification [41], a multiprocessing

version of a widely-used dataset generation function. Synthetic

datasets act as a “worst case scenario,” as all feature samples

follow similar normal distributions.

“Synthetic 2” is a larger-than-memory synthetic multiclass

dataset, occupying 400 GB when stored as a NumPy binary

file of 32-bit unsigned integers. As the dataset is larger than

the host’s memory, the multithreaded Python implementation

reads data from storage when necessary through a memory-

mapped file. Dynamic scheduling assures that the processor

utilization is as high as possible, overlapping loading with

computing in different cores. FINESSD shows its true power

here, processing 400 GB in roughly 2 minutes, at a rate of 3.3

GB/sec, which is the maximum the SmartSSD can achieve,

TABLE II
RESOURCE ALLOCATION OF FINESSD ON THE SMARTSSD KINTEX

ULTRASCALE+ KU15P FPGA

Higgs MS Rank Synth. 2

LUT 12152 (3.08%) 25654 (6.50%) 55511 (14.07%)

LUTRAM 298 (0.20%) 258 (0.17%) 298 (0.20%)

FF 12477 (1.46%) 24612 (2.89%) 49975 (5.87%)

BRAM 19 (2.59%) 51 (6.94%) 73 (9.93%)

yielding a speedup of 35× against Python MP, which requires

over an hour for the same result. FEAST cannot run this

dataset, as it does not fit in memory.

The FPGA resources required depend mainly on the number

and size of counters, the logarithm table size and the number of

features to select, which in turn affects the number of registers

and comparators necessary during sorting. Some indicative

results can be seen in Table II after the implementation of

FINESSD for three of the datasets mentioned above. The

FPGA resource allocation for the smallest, a medium and

the largest design is shown. As we can see, even for the

modest-sized FPGA of the SmartSSD, for all examples our

implementation occupies at most 15% of the logic and 10%

of the BRAM, leaving plenty of area for other kernels. A

critical advantage of FINESSD is that the resources required

remain the same regardless of the total number of features or

the number of samples in the dataset.

From an energy consumption point of view, the SmartSSD

utilizes a low-power FPGA requiring ∼7.5 W, ∼10 W in-

cluding the FPGA DRAM according to documentation and

relevant work [28], [30]. The SmartSSD card as a whole

consumes a maximum of 25 W [28]. We used a power

meter connected to the PSU of the computer system used in

the experiments to measure the power consumption. When

FINESSD is filtering “Synthetic2,” the system consumes

106.4 W (1.34 variance). For the software baseline (Python

MP) filtering “Synthetic2,” the system consumes 222.45 W

(10.7 variance). Comparing the energy consumed by the

system for the larger-than-memory dataset, using FINESSD is

(PBaseline × tBaseline)/(PFINESSD × tFINESSD) = 73.6×
more energy efficient.

Beyond PCIe Gen3 — The FPGA-based accelerator gen-

erated by FINESSD accepts either 32 or 64 16-bit unsigned

integers, or alternatively, 16 or 32 32-bit unsigned integers

per clock cycle at 250 MHz without the need to stall/throttle.

Hence, FINESSD can process up to 32 GB/sec, provided

that the memory interface and I/O bus can accommodate

such a bandwidth. While that is more than enough for the

SmartSSD’s 3.3 GB/sec actual bandwidth, the fact that our

design can be placed and routed with that configuration shows

us that we can go beyond the speeds of PCIe Gen3 that the

SmartSSD supports. With PCIe Gen4 still not having become

a mainstream choice and the first PCIe Gen5 SSDs having

been announced in 2023, FINESSD’s potential speeds can still

easily harness the bandwidth of the fastest available PCIe Gen5

SSDs of today at a bit under 15 GB/sec [42], [43].

VI. CONCLUSIONS

Feature selection and feature extraction represent the first

stage for analysing large and complex datasets. Both reduce

the dataset size as to accelerate the training of the appropriate

ML algorithm as well as improving the accuracy of the

inference. Feature selection has the advantage that it retains the

meaning of the features and thus can be used with explainable

ML algorithms.

FINESSD has analysed the preprocessing stage of ML

pipelines from the point of view of near-storage feature

selection and has focused on mutual information maximization

(MIM) due to its low resource requirements while providing

state-of-the-art results. We have deployed FINESSD on a

Samsung SmartSSD, a computational storage device with an

NVMe SSD, an FPGA, and a dedicated PCIe link connecting

the two in the same package. The performance evaluation

has shown how FINESSD can fully harness the bandwidth

of a modern SSD and offload from the host processors the

complete feature selection pipeline with significant end-to-end

performance and energy gains.

FINESSD introduces a novel approximation for mutual

information, and produces tailored designs which benefit from

the polymorphic nature of FPGAs. Based on counters that

record multiple feature samples at clock rate, FINESSD out-

performs the baseline methods by tackling the data transfer and

computation bottlenecks. FINESSD is the first near-storage

application of feature selection, eliminating data transfers of

low-reuse data from storage to host and increasing system-

level parallelism. An important advantage of FINESSD is that

the FPGA resources required remain constant regardless of the

size of the dataset.

A comprehensive evaluation using datasets of different

dimensions and complexity, has shown that FINESSD yields

up to 35× speedup over standard multiprocessing Python

packages, and up to 19× speedup over the FEAST optimized

C library. Using FINESSD also provides important energy

efficiency gains. The acceleration of feature selection was

limited by current SmartSSDs using PCIe Gen3. The imple-

mentation of FINESSD can take advantage of PCIe Gen5.

The evaluation has also provided the first thorough exploration

on the approximation of mutual information with resource

constraints derived for near-storage FPGAs, demonstrating the

trade-off between accuracy and hardware resources.

Finally, mutual information has many applications beyond

feature selection and ML. Other domains with large datasets

where this approximation could be applied include Medical

Imaging, Gene Analysis (reconstruction of gene networks or

multisequence alignment), Cosmology, and Solar Physics.

ACKNOWLEDGMENTS

Nikolaos Kyparissas is supported by the Department of Com-

puter Science Kilburn Scholarship. This work is partially

funded by EPSRC EP/N035127/1 (LAMBDA project) and

EP/T026995/1 (EnnCore project). Mikel Luján is supported

by a Royal Society Wolfson Fellowship and an Arm/RAEng

Research Chair Award.

REFERENCES

[1] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood
maximisation: A unifying framework for information theoretic feature
selection,” Journal of Machine Learning Research, vol. 13, no. 1, p.
27–66, jan 2012.

[2] T. Liu, S. Liu, Z. Chen, and W.-Y. Ma, “An evaluation on feature
selection for text clustering,” in Proceedings of the Twentieth Interna-

tional Conference on International Conference on Machine Learning,
ser. ICML’03. AAAI Press, 2003, p. 488–495.

[3] H. Liu and H. Motoda, Computational Methods of Feature Selection

(Chapman & Hall/CRC Data Mining and Knowledge Discovery Series).
Chapman & Hall/CRC, 2007.

[4] A. A. Freitas, “Comprehensible classification models: A position
paper,” SIGKDD Explor. Newsl., vol. 15, no. 1, p. 1–10, mar 2014.
[Online]. Available: https://doi.org/10.1145/2594473.2594475

[5] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A
review,” in Computational Methods of Feature Selection (Chapman &

Hall/CRC Data Mining and Knowledge Discovery Series), H. Liu and
H. Motoda, Eds. Chapman & Hall/CRC, 2014, ch. 2, pp. 37–64.

[6] V. Bolón-Canedo and B. Remeseiro, “Feature selection in
image analysis: a survey,” Artificial Intelligence Review,
vol. 53, no. 4, pp. 2905–2931, Apr 2020. [Online]. Available:
https://doi.org/10.1007/s10462-019-09750-3

[7] E. Hancer, B. Xue, and M. Zhang, “A survey on feature
selection approaches for clustering,” Artificial Intelligence Review,
vol. 53, no. 6, pp. 4519–4545, Aug 2020. [Online]. Available:
https://doi.org/10.1007/s10462-019-09800-w

[8] P. Dhal and C. Azad, “A comprehensive survey on feature selection
in the various fields of machine learning,” Applied Intelligence,
vol. 52, no. 4, pp. 4543–4581, Mar 2022. [Online]. Available:
https://doi.org/10.1007/s10489-021-02550-9

[9] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[10] S. Zhang and Z.-Q. Lang, “Orthogonal least squares
based fast feature selection for linear classification,” Pattern

Recognition, vol. 123, p. 108419, 2022. [Online]. Available:
https://doi.org/10.1016/j.patcog.2021.108419

[11] L. Morán-Fernández and V. Bolón-Canedo, “Finding a needle in a
haystack: insights on feature selection for classification tasks,” Journal

of Intelligent Information Systems, Nov 2023. [Online]. Available:
https://doi.org/10.1007/s10844-023-00823-y

[12] S. Liu and M. Tian, “Mutual information maximization
for semi-supervised anomaly detection,” Knowledge-Based Sys-

tems, vol. 284, p. 111196, 2024. [Online]. Available:
https://doi.org/10.1016/j.knosys.2023.111196

[13] A. Barbalace and J. Do, “Computational storage: Where are we today?”
Jan. 2021, conference on Innovative Data Systems Research 2020.

[14] D. D. Sharma, R. Blankenship, and D. S. Berger, “An introduction to
the compute express link (CXL) interconnect,” 2023.

[15] J. González-Domı́nguez, R. R. Expósito, and V. Bolón-Canedo,
“CUDA-JMI: Acceleration of feature selection on heterogeneous
systems,” Future Generation Computer Systems, vol. 102, pp. 426–436,
2020. [Online]. Available: https://doi.org/10.1016/j.future.2019.08.031

[16] S. Ramı́rez-Gallego, I. Lastra, D. Martı́nez-Rego, V. Bolón-Canedo,
J. M. Benı́tez, F. Herrera, and A. Alonso-Betanzos, “Fast-
mRMR: Fast minimum redundancy maximum relevance algorithm
for high-dimensional big data,” International Journal of Intelligent

Systems, vol. 32, no. 2, pp. 134–152, 2017. [Online]. Available:
https://doi.org/10.1002/int.21833

[17] K. Iordanou, S. M. Nikolakaki, P. Malakonakis, and A. Dollas, “A
performance evaluation of multi-fpga architectures for computations
of information transfer,” in Proceedings of the 18th International

Conference on Embedded Computer Systems: Architectures, Modeling,

and Simulation, ser. SAMOS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1–9. [Online]. Available:
https://doi.org/10.1145/3229631.3229635

[18] D. Conficconi, E. D’Arnese, E. Del Sozzo, D. Sciuto, and M. D.
Santambrogio, “A framework for customizable FPGA-based image
registration accelerators,” in The 2021 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
251–261. [Online]. Available: https://doi.org/10.1145/3431920.3439291

[19] L. Morán-Fernández, K. Sechidis, V. Bolón-Canedo, A. Alonso-
Betanzos, and G. Brown, “Feature selection with limited bit depth
mutual information for portable embedded systems,” Knowledge-

Based Systems, vol. 197, p. 105885, 2020. [Online]. Available:
https://doi.org/10.1016/j.knosys.2020.105885

[20] L. Paninski, “Estimation of entropy and mutual information,” Neural

Computation, vol. 15, no. 6, p. 1191–1253, jun 2003.

[21] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Phys. Rev. E, vol. 69, p. 066138, Jun 2004. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.69.066138

[22] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PLOS ONE, vol. 9, no. 2, pp. 1–5, 02 2014. [Online]. Available:
https://doi.org/10.1371/journal.pone.0087357

[23] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel Programming for
FPGAs,” ArXiv e-prints, May 2018.

[24] S. A. Fahmy, “Histogram-based probability density function estimation
on FPGAs,” in 2010 International Conference on Field-Programmable

Technology, 2010, pp. 449–453.

[25] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high
level specifications,” in Proceedings. Second ACM and IEEE Interna-

tional Conference on Formal Methods and Models for Co-Design, 2004.

MEMOCODE ’04., 2004, pp. 69–70.

[26] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind, “The essence
of Bluespec: A core language for rule-based hardware design,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 243–257.
[Online]. Available: https://doi.org/10.1145/3385412.3385965

[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[28] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and
Y. S. Ki, “SmartSSD: FPGA accelerated near-storage data analytics on
SSD,” IEEE Computer Architecture Letters, vol. 19, no. 2, pp. 110–113,
2020.

[29] S. Salamat, A. Haj Aboutalebi, B. Khaleghi, J. H. Lee, Y. S. Ki,
and T. Rosing, “NASCENT: Near-storage acceleration of database sort
on SmartSSD,” in The 2021 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, ser. FPGA ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 262–272.
[Online]. Available: https://doi.org/10.1145/3431920.3439298

[30] S. Salamat, H. Zhang, Y. S. Ki, and T. Rosing, “NASCENT2: Generic
near-storage sort accelerator for data analytics on SmartSSD,” ACM

Trans. Reconfigurable Technol. Syst., vol. 15, no. 2, jan 2022. [Online].
Available: https://doi.org/10.1145/3472769

[31] W. Qiao, J. Oh, L. Guo, M.-C. F. Chang, and J. Cong, “FANS:
FPGA-accelerated near-storage sorting,” in 2021 IEEE 29th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2021, pp. 106–114.

[32] J.-H. Kim, Y.-R. Park, J. Do, S.-Y. Ji, and J.-Y. Kim, “Accelerating large-
scale graph-based nearest neighbor search on a computational storage
platform,” IEEE Transactions on Computers, vol. 72, no. 1, pp. 278–290,
2023.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] Dask Development Team, Dask: Library for dynamic task scheduling,
2016. [Online]. Available: https://dask.org

[35] A. Pocock, FEAST: A FEAture Selection Toolbox for

C/C++ & MATLAB/OCTAVE, v2.0.0., 2017. [Online]. Available:
https://github.com/Craigacp/FEAST

[36] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[37] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in

NIPS Workshop on Deep Learning and Unsupervised Feature Learning

2011, 2011.
[38] P. J. Sadowski, D. Whiteson, and P. Baldi, “Searching for Higgs

Boson decay modes with deep learning,” in Advances in Neural In-

formation Processing Systems, Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, Eds., vol. 27. Curran Associates,
Inc., 2014.

[39] T. Qin and T. Liu, “Introducing LETOR 4.0 datasets,” CoRR, vol.
abs/1306.2597, 2013. [Online]. Available: http://arxiv.org/abs/1306.2597

[40] A. Kleerekoper, M. Pappas, A. Pocock, G. Brown, and M. Lujan, “A
scalable implementation of information theoretic feature selection for
high dimensional data,” in Proceedings of the 2015 IEEE International

Conference on Big Data (Big Data), ser. BIG DATA ’15. USA:
IEEE Computer Society, 2015, p. 339–346. [Online]. Available:
https://doi.org/10.1109/BigData.2015.7363774

[41] D. developers, “Dask API reference: dask ml: datasets:
make classification,” Oct 2023. [Online]. Available: https://ml.dask.org

[42] S. Downing, “Crucial T700 SSD review: The
temporary king,” May 2023. [Online]. Available:
https://www.tomshardware.com/reviews/crucial-t700-ssd-review

[43] C. Robinson, “Sabrent shows progress building the fastest
PCIe Gen5 M.2 SSD,” Jul 2023. [Online]. Avail-
able: https://www.servethehome.com/sabrent-shows-progress-building-
the-fastest-pcie-gen5-m-2-ssd/

